skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beverly, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Static and hard-coded layer-two network identifiers are well known to present security vulnerabilities and endanger user privacy. In this work, we introduce a new privacy attack against Wi-Fi access points listed on secondhand marketplaces. Specifically, we demonstrate the ability to remotely gather a large quantity of layer-two Wi-Fi identifiers by programmatically querying the eBay marketplace and applying state-of-the-art computer vision techniques to extract IEEE 802.11 BSSIDs from the seller's posted images of the hardware. By leveraging data from a global Wi-Fi Positioning System (WPS) that geolocates BSSIDs, we obtain the physical locations of these devices both pre- and post-sale. In addition to validating the degree to which a seller's location matches the location of the device, we examine cases of device movement–once the device is sold and then subsequently re-used in a new environment. Our work highlights a previously unrecognized privacy vulnerability and suggests, yet again, the strong need to protect layer-two network identifiers. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. IPv6's large address space allows ample freedom for choosing and assigning addresses. To improve client privacy and resist IP-based tracking, standardized techniques leverage this large address space, including privacy extensions and provider prefix rotation. Ephemeral and dynamic IPv6 addresses confound not only tracking and traffic correlation attempts, but also traditional network measurements, logging, and defense mechanisms. We show that the intended anti-tracking capability of these widely deployed mechanisms is unwittingly subverted by edge routers using legacy IPv6 addressing schemes that embed unique identifiers. We develop measurement techniques that exploit these legacy devices to make tracking such moving IPv6 clients feasible by combining intelligent search space reduction with modern high-speed active probing. Via an Internet-wide measurement campaign, we discover more than 9M affected edge routers and approximately 13k /48 prefixes employing prefix rotation in hundreds of ASes worldwide. We mount a six-week campaign to characterize the size and dynamics of these deployed IPv6 rotation pools, and demonstrate via a case study the ability to remotely track client address movements over time. We responsibly disclosed our findings to equipment manufacturers, at least one of which subsequently changed their default addressing logic. 
    more » « less